
PICSciE/PICASso Mini-Course
December 7-8, 2011

Stéphane Ethier
(ethier@pppl.gov)

Computational Plasma Physics Group
Princeton Plasma Physics Lab

Goals for this tutorial

1.  Get introduced to parallel programming for shared memory
and distributed systems

2.  Learn practical knowledge of MPI communication library
3.  Learn practical knowledge of OpenMP directives for shared

memory parallelism
4.  Learn how to use both MPI and OpenMP in the same parallel

application

Typical cluster architecture

Why Parallel Computing?

•  Want to speed up your calculation.
•  Your problem is too large for a single node
•  Want to use those extra cores on your multicore processor
•  Solution:

–  Split the work between several processor cores so that they can work in
parallel

–  Exchange data between them when needed
•  How?

–  Compiler auto-prallelization or OpenMP directives on shared memory
node

–  Message Passing Interface (MPI) on distributed memory systems
(works also on shared memory nodes)

Languages and libraries for parallel
computing

•  Multithreading or “shared memory parallelism”
–  Directive-base OpenMP (deceptively easy) www.openmp.org (!$OMP DO)
–  POSIX pthread programming (explicit parallelism, somewhat harder than MPI

since one needs to manage threads access to memory).
–  GPGPU (General-Purpose Graphical Processing Unit) programming with CUDA

(NVidia) or OpenCL (similar to CUDA but more difficult).
•  PGAS global address space SPMD languages (using GASNet layer or other)

–  Efficient single-sided communication on globally-addressable memory
–  Co-array FORTRAN

•  Example: xarray(100,200)[*] where * is a process number
•  “puts” and “gets” directly to and from remote memory via the network with

little or no involvement from the CPU
•  Works best on a specialized network, such as Cray XE6 Gemini interconnect

–  UPC (http://upc.lbl.gov/): Similar to co-array Fortran but for C.
•  MPI for distributed-memory parallelism (runs everywhere except GPUs)

Let’s start with MPI…

Reason to use MPI: Scalability and portability

Cray XT5 Jaguar at the Oak Ridge
Leadership Class Facility (OLCF)
 224,256 processing cores

Blue Gene/P Intrepid at the
Argonne Leadership Class
Facility (ALCF)
 163,840 processing cores

MPI

•  Context: distributed memory parallel computers
–  Each processor has its own memory and cannot access the memory of

other processors
–  Any data to be shared must be explicitly transmitted from one to

another
•  Most message passing programs use the single program

multiple data (SPMD) model
–  Each processor executes the same set of instructions
–  Parallelization is achieved by letting each processor operate on a

different piece of data
–  Not to be confused with SIMD: Single Instruction Multiple Data a.k.a

vector computing

How to split the work between processors?

•  Most widely used method for grid-based calculations:
–  DOMAIN DECOMPOSITION

•  Split particles in particle-in-cell (PIC) or molecular dynamics
codes.

•  Split arrays in PDE solvers
•  etc…
•  Keep it LOCAL

What is MPI?

•  MPI stands for Message Passing Interface.
•  It is a message-passing specification, a standard, for the

vendors to implement.
•  In practice, MPI is a set of functions (C) and subroutines

(Fortran) used for exchanging data between processes.
•  An MPI library exists on most, if not all, parallel computing

platforms so it is highly portable.
•  The scalability of MPI is not limited by the number of

processors/cores on one computation node, as opposed to
shared memory parallel models.

MPI standard

•  MPI standard is a specification of what MPI is and how it
should behave. Vendors have some flexibility in the
implementation (e.g. buffering, collectives, topology
optimizations, etc.).

•  This tutorial focuses on the functionality introduced in the
original MPI-1 standard

•  MPI-2 standard introduced additional support for
–  Parallel I/O (many processes writing to a single file). Requires a

parallel filesystem to be efficient
–  One-sided communication: MPI_Put, MPI_Get
–  Dynamic Process Management

How much do I need to know?

•  MPI is small (6 functions)
–  Many parallel programs can be written with just 6 basic functions.

•  MPI is large (125 functions)
–  MPI's extensive functionality requires many functions
–  Number of functions not necessarily a measure of complexity

•  MPI is just right
–  One can access flexibility when it is required.
–  One need not master all parts of MPI to use it.

References

•  http://www.mpi-forum.org (location of the MPI standard)
•  http://www.llnl.gov/computing/tutorials/mpi/
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
•  http://www-unix.mcs.anl.gov/mpi/tutorial/

•  MPI on Linux clusters:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
–  Open MPI (http://www.open-mpi.org/)

•  Book:
–  Using MPI “Portable Parallel Programming with the Message-Passing Interface” by

William Gropp, Ewing Lusk, and Anthony Skjellum
–  Using MPI-2 “Advanced Features of the Message-Passing Interface”

MPI Communicators

•  A communicator is an identifier associated with a group of
processes
–  Each process has a unique rank within a specific communicator (the

rank starts from 0 and has a maximum value of (nprocesses-1)).
–  Internal mapping of processes to processing units
–  Always required when initiating a communication by calling an MPI

function or routine.
•  Default communicator MPI_COMM_WORLD, which

contains all available processes.
•  Several communicators can coexist

–  A process can belong to different communicators at the same time, but
has a unique rank in each communicator

A sample MPI program in Fortran 90

Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

Header file

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

• Defines MPI-related parameters and
functions

• Must be included in all routines
calling MPI functions

• Can also use include file:
 include mpif.h

Initialization

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the beginning of the
code before any other calls to MPI
functions

•  Sets up the communication channels
between the processes and gives each
one a rank.

How many processes do we have?

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Returns the number of processes available
under MPI_COMM_WORLD communicator

•  This is the number used on the mpiexec (or
mpirun) command:

 mpiexec –n nproc a.out

What is my rank?

Program mpi_code
 ! Load MPI definitions
 use mpi

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

•  Get my rank among all of the nproc processes
under MPI_COMM_WORLD

•  This is a unique number that can be used to
distinguish this process from the others

Termination

Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)
 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the end of the
properly close all communication
channels

• No more MPI calls after finalize

A sample MPI program in C

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

Compiling and linking an MPI code

•  Need to tell the compiler where to find the MPI include files
and how to link to the MPI libraries.

•  Fortunately, most MPI implementations come with scripts that
take care of these issues:
–  mpicc mpi_code.c –o a.out
–  mpiCC mpi_code_C++.C –o a.out
–  mpif90 mpi_code.f90 –o a.out

•  Two widely used (and free) MPI implementations on Linux
clusters are:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich)
–  OPENMPI (http://www.openmpi.org)

Makefile

•  Always a good idea to have a Makefile

%cat Makefile
CC=mpicc
CFLAGS=-O

% : %.c
 $(CC) $(CFLAGS) $< -o $@

How to run an MPI executable

•  The implementation supplies scripts to launch the MPI parallel
calculation, for example:
 mpirun –np #proc a.out

 mpiexec –n #proc a.out
 aprun –size #proc a.out (Cray XT)
•  A copy of the same program runs on each processor core

within its own process (private address space).
•  Each process works on a subset of the problem.
•  Exchange data when needed

–  Can be exchanged through the network interconnect
–  Or through the shared memory on SMP machines (Bus?)

•  Easy to do coarse grain parallelism = scalable

MPICH, OPENMPI

mpirun and mpiexec

•  Both are used for starting an MPI job
•  If you don’t have a batch system, use mpirun

 mpirun –np #proc –machinefile mfile a.out >& out < in &

 %cat mfile
 machine1.princeton.edu machine1.princeton.edu
 machine2.princeton.edu OR machine1.princeton.edu
 machine3.princeton.edu machine1.princeton.edu
 machine4.princeton.edu machine1.princeton.edu

 1 MPI process per host 4 MPI processes on same host

•  PBS batch system usually takes care of arguments to mpiexec

Batch System: PBS primer

•  Submit a job script: qsub script
•  Check status of jobs: qstat –a (for all jobs)
•  Stop a job: qdel job_id

--- PBS SCRIPT ---
#PBS –l nodes=4:ppn=2,walltime=02:00:00
#PBS –q dque
#PBS –V
#PBS –N job_name
#PBS –m abe
cd $PBS_O_WORKDIR
mpiexec a.out

Basic MPI calls to exchange data

•  Point-to-Point communications
–  Only 2 processes exchange data
–  It is the basic operation of all MPI calls

•  Collective communications
–  A single call handles the communication between all the processes in a

communicator
–  There are 3 types of collective communications

•  Data movement (e.g. MPI_Bcast)
•  Reduction (e.g. MPI_Reduce)
•  Synchronization: MPI_Barrier

Point-to-point communication

Point to point: 2 processes at a time

 MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

 MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
 recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where the datatypes are:
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:
Broadcast

•  One process (called “root”) sends data to all the other
processes in the same communicator

•  Must be called by all the processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:
Gather

•  One root process collects data from all the other processes in the same
communicator

•  Must be called by all the processes in the communicator with the same
arguments

•  “sendcount” is the number of basic datatypes sent, not received (example
above would be sendcount = 1)

•  Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Collective communication:
Gather to All

•  All processes within a communicator collect data from each other and end
up with the same information

•  Must be called by all the processes in the communicator with the same
arguments

•  Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:
Reduction

•  One root process collects data from all the other processes in the same
communicator and performs an operation on the received data

•  Called by all the processes with the same arguments
•  Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical

AND, OR, XOR, and a few more
•  User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:
Reduction to All

•  All processes within a communicator collect data from all the
other processes and performs an operation on the received data

•  Called by all the processes with the same arguments
•  Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)

P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls

One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,
 recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,
 recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

Blocking communications

•  The call waits until the data
transfer is done
–  The sending process waits until

all data are transferred to the
system buffer

–  The receiving process waits until
all data are transferred from the
system buffer to the receive
buffer

•  All collective communications
are blocking

Non-blocking

•  Returns immediately after
the data transferred is
initiated

•  Allows to overlap
computation with
communication

•  Need to be careful though
–  When send and receive

buffers are updated before
the transfer is over, the
result will be wrong

Non-blocking send and receive

Point to point:

 MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)

 MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication

 MPI_Wait(request,status,ierr)

 MPI_Test(request,flag,status,ierr)

MPI_Wait returns when the operation identified by “request” is complete. This is a non-
local operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete.
Otherwise it returns “flag = false”. This is a local operation.

How to time your MPI code

•  Several possibilities but MPI provides an easy to use function
called “MPI_Wtime()”. It returns the number of seconds since
an arbitrary point of time in the past.

 FORTRAN: double precision MPI_WTIME()
 C: double MPI_Wtime()

 starttime=MPI_WTIME()
 … program body …
 endtime=MPI_WTIME()
 elapsetime=endtime-starttime

Debugging tips

Use “unbuffered” writes to do “printf-debugging” and always write out the
process id:
 C: fprintf(stderr,”%d: …”,myid,…);
 Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The
errorcode is returned to the calling environment so it can be any number.
 C: MPI_Abort(MPI_Comm comm, int errorcode);
 Fortran: call MPI_ABORT(comm, errorcode, ierr)

To detect a “NaN” (not a number):
 C: if (var != var)
 Fortran: if (var /= var)

Use a parallel debugger such as Totalview or DDT if available

Good MPI web sites (again)

•  http://www.mpi-forum.org (location of the MPI standard)
•  http://www.llnl.gov/computing/tutorials/mpi/
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
•  http://www-unix.mcs.anl.gov/mpi/tutorial/

•  MPI on Linux clusters:
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
–  Open MPI (http://www.open-mpi.org/)

Good book for learning MPI

Work example: calculating π using
numerical integration

#include <stdio.h>!
#include <math.h>!
int main(int argc, char *argv[])!
{!
 int n, myid, numprocs, i;!
 double PI25DT = 3.141592653589793238462643;!
 double mypi, pi, h, sum, x;!
 FILE *ifp;!

 ifp = fopen("ex4.in","r");!
 fscanf(ifp,"%d",&n);!
 fclose(ifp);!
 printf("number of intervals = %d\n",n);!

 h = 1.0 / (double) n;!
 sum = 0.0;!
 for (i = 1; i <= n; i++) {!
 x = h * ((double)i - 0.5);!
 sum += (4.0 / (1.0 + x*x));!
 }!
 mypi = h * sum;!

 pi = mypi;!
 printf("pi is approximately %.16f, Error is %.16f\n",!
 pi, fabs(pi - PI25DT));!

 return 0;!
}!

C version

Work example: FORTRAN version
 program fpi!
 double precision PI25DT!
 parameter (PI25DT = 3.141592653589793238462643d0)!
 double precision mypi, pi, h, sum, x, f, a!
 integer n, myid, numprocs, i, j, ierr!

 open(12,file='ex4.in',status='old')!
 read(12,*) n!
 close(12)!
 write(*,*)' number of intervals=',n!
c!
 h = 1.0d0/n!
 sum = 0.0d0!
 do i = 1, n!
 x = h * (dble(i) - 0.5d0)!
 sum = sum + 4.d0/(1.d0 + x*x)!
 enddo!
 mypi = h * sum!
c!
 pi = mypi!
 write(*,*)' pi=',pi,' Error=',abs(pi - PI25DT)!

 end!

OpenMP: a directive-based approach to
shared memory parallelism

http://www.openmp.org

What is OpenMP?

•  OpenMP is:
–  An Application Program Interface (API) that may be used to explicitly

direct multi-threaded, shared memory parallelism
–  Comprised of three primary API components:

•  Compiler Directives
•  Runtime Library Routines
•  Environment Variables

–  Portable:
•  The API is specified for C/C++ and Fortran
•  Multiple platforms have been implemented including most Unix platforms

and Windows
–  Standardized:

•  Jointly defined and endorsed by a group of major computer hardware and
software vendors

•  Expected to become an ANSI standard later?

What are directives?

•  In C or C++, preprocessor
statements ARE directives. They
“direct” the preprocessing stage.

•  Parallelization directives tell the
compiler to add some machine
code so that the next set of
instructions will be distributed to
several processors and run in
parallel.

•  In FORTRAN, directives are
special purpose comments
inserted right before the loop or
region to parallelize.

C:
#pragma omp parallel for private(idx)
for (idx=1; idx <= n; idx++) {
 a[idx] = b[idx] + c[idx];
}

Fortran:
!$omp parallel do private(idx)
do idx=1,n
 a(idx) = b(idx) + c(idx)
enddo

Telling the compiler to process the
directives

•  Most, if not all compilers can process OpenMP directives and generate
appropriate multi-threaded code.

•  Be careful though. Some vendors are selling different versions of their
compilers and the OpenMP support can come under a “parallel” or “high
performance” version.

•  This is achieved by using an option that instructs the compiler to activate
and interpret all OpenMP directives. Here are a few examples:
–  PGI compiler: pgf90 –mp and pgcc –mp
–  IBM xlf: xlf90_r -qsmp=omp and xlc_r –qsmp=omp
–  Linux gcc: gcc –fopenmp
–  Intel (Linux): icc –openmp and ifort -openmp

•  It is important to use the “thread-safe” versions of the XL compilers on
the IBM systems (Blue Gene and Power systems). They have an extra
“_r” added to their names (xlc_r, xlf90_r)

•  Several Fortran OpenMP directives come in pairs and have the form:

Shared memory parallelism

•  Multi-threaded parallelism (parallelism-on-demand)
•  Fork-and-Join Model (although we say “spawn” for

threads and “fork” for processes).

Spawn
threads

Parallel region Parallel region

Serial
region

Serial
region

Serial
region

Spawn
threads

Destroy
threads

Destroy
threads

Process and thread: what’s the difference?

•  You need an existing process to create a thread.
•  Each process has at least one thread of execution.
•  A process has its own virtual memory space that cannot be

accessed by other processes running on the same or on a
different processor.

•  All threads created by a process share the virtual address space
of that process. They read and write to the same address space
in memory. They also share the same process and user ids, file
descriptors, and signal handlers. However, they have their own
program counter value and stack pointer, and can run
independently on several processors.

Amdahl’s law of scalability

•  For p=0.8 the max
speedup is 5!!

•  The goal is to minimize
the time spent in the
serial regions

where n is the number of
processors and p the
fraction of parallel
work

Goals of OpenMP

•  Provide a standard among a variety of shared memory architectures/
platforms

•  Establish a simple and limited set of directives for programming shared
memory machines. Significant parallelism can be implemented by using
just 3 or 4 directives.

•  Provide capability to incrementally parallelize a serial program, unlike
message-passing libraries which typically require an all or nothing
approach

•  Provide the capability to implement both coarse-grain and fine-grain
parallelism.
–  Coarse-grain = domain decomposition.
–  Fine-grain = loop-level parallelism.

•  Supports Fortran (77, 90, and 95), C, and C++
•  Public forum for API and membership

Example of OpenMP code structure

In FORTRAN:
 PROGRAM HELLO
 INTEGER VAR1, VAR2, VAR3
 Serial code . . .
 Beginning of parallel section. Fork a team of threads.
 Specify variable scoping
!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
 Parallel section executed by all threads . . .
 All threads join master thread and disband
!$OMP END PARALLEL
 Resume serial code . . .
 END

Example of code structure in C

In C:
#include <omp.h>
main () {
 int var1, var2, var3;
 Serial code . . .
 Beginning of parallel section. Fork a team of threads.
 Specify variable scoping
#pragma omp parallel private(var1, var2) shared(var3)
 {
 Parallel section executed by all threads . . .
 All threads join master thread and disband
 }
 Resume serial code . . .
}

Directives format in Fortran

sentinel directive-name [clause…]
–  All Fortran OpenMP directives must begin with a sentinel. The

accepted sentinels depend upon the type of Fortran source.
Possible sentinels are: !OMP, COMP, *$OMP

–  Just use !$OMP and you will be fine…
–  The sentinel must be followed by a valid directive name.
–  Clauses are optional and can be in any order, and repeated as

necessary unless otherwise restricted.
–  All Fortran fixed form rules for line length, white space,

continuation and comment columns apply for the entire directive
line

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

Fortran fixed form source

•  Fixed Form Source:
–  !$OMP C$OMP *$OMP are accepted sentinels and must start in

column 1
–  All Fortran fixed form rules for line length, white space,

continuation and comment columns apply for the entire directive
line

–  Initial directive lines must have a space/zero in column 6.
–  Continuation lines must have a non-space/zero in column 6.

The following formats are equivalent:

!234567

!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO C$OMP+SHARED
(A,B,C)

Fortran free form source

•  Free Form Source:
–  !$OMP is the only accepted sentinel. Can appear in any column, but

must be preceded by white space only.
–  All Fortran free form rules for line length, white space, continuation

and comment columns apply for the entire directive line
–  Initial directive lines must have a space after the sentinel.
–  Continuation lines must have an ampersand as the last non-blank

character in a line. The following line must begin with a sentinel and
then the continuation directives.

!23456789
 !$OMP PARALLEL DO &
 !$OMP SHARED(A,B,C)
 !$OMP PARALLEL &
 !$OMP&DO SHARED(A,B,C)

C / C++ Directives Format

•  #pragma omp
–  Required for all OpenMP C/C++ directives.

•  directive-name
–  A valid OpenMP directive. Must appear after the pragma and

before any clauses.
•  [clause, ...]

–  This is optional. Clauses can be in any order, and repeated as
necessary unless otherwise restricted.

•  newline
–  Required. Precedes the structured block which is enclosed by this

directive.

#pragma omp parallel default(shared) private(beta,pi)

General rules for C/C++ format

•  Directives follow conventions of the C/C++ standards for
compiler directives

•  Case sensitive
•  Only one directive-name may be specified per directive (true

with Fortran also)
•  Each directive applies to at most one succeeding statement,

which must be a structured block.
•  Long directive lines can be "continued" on succeeding lines by

escaping the newline character with a backslash ("\") at the
end of a directive line.

Conditional compilation: _OPENMP

•  All OpenMP-compliant implementations define a macro named
_OPENMP when the OpenMP compiler option is enabled.

•  This macro can be used to include extra code at the
preprocessing stage.

•  Valid for both C and Fortran (requires .F or .F90 extension),
although one can also use simply !$ in version 2.0 and higher
for Fortran (see specification).

#ifdef _OPENMP
 iam = omp_get_thread_num() + index;
#endif

!$ iam = omp_get_thread_num() + &
!$& index

PARALLEL Region Construct

•  A parallel region is a block of code that will be executed by
multiple threads. This is the fundamental OpenMP parallel
construct.

•  When a thread reaches a PARALLEL directive, it creates a
team of threads and becomes the master of the team. The
master is a member of that team and has thread number 0
within that team.

•  Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

•  There is an implied barrier at the end of a parallel section.
Only the master thread continues execution past this point.

Fortran format of PARALLEL construct

!$OMP PARALLEL [clauses …
 PRIVATE (list)
 SHARED (list)
 DEFAULT (PRIVATE | SHARED | NONE)
 FIRSTPRIVATE (list)
 REDUCTION ({operator|intrinsic_procedure}: list)
 COPYIN (list)
 IF (scalar_logical_expression)
 NUM_THREADS(scalar_integer_expression)
]
 block
!OMP END PARALLEL

C/C++ format of parallel construct

#pragma omp parallel [clauses] new-line
 { structured-block }

Where clauses are:
 private(list)
 shared(list)
 default(shared | none)
 firstprivate(list)
 reduction(operator : variable-list)
 copyin(list)
 if(scalar_expression)
 num_threads(scalar_integer_expression)

Data scope attribute clauses

•  An important consideration for OpenMP programming is the understanding
and use of data scoping.

•  Because OpenMP is based on the shared memory programming model,
most variables are shared by default between the threads.

•  Global variables include (shared by default):
–  Fortran: COMMON blocks, SAVE variables, MODULE variables
–  C: File scope variables, static

•  Private variables include (private by default):
–  Loop index variables
–  Stack variables in subroutines called from parallel regions
–  Fortran: Automatic variables within a statement block

Data scope attributes clauses

•  The clauses private(list), shared(list), default and firstprivate
(list) allow the user to control the scope attributes of variables for the
duration of the parallel region in which they appear. The variables are listed
in brackets right after the clause.

•  PRIVATE variables behave as follows:
–  A new object of the same type is declared once for each thread in the team

–  All references to the original object are replaced with references to the new
object

–  Variables declared PRIVATE are uninitialized for each thread

•  The FIRSTPRIVATE clause combines the behavior of the PRIVATE
clause with automatic initialization of the variables in its list. Listed
variables are initialized according to the value of their original objects prior
to entry into the parallel or work-sharing construct.

REDUCTION clause

•  reduction(operator : variable-list)
•  This clause performs a reduction on the variables that appear in list, with

the operator or the intrinsic procedure specified.
•  Operator is one of the following:

–  Fortran: +, *, -, .AND., .OR., .EQV., .NEQV., MIN, MAX
–  C/C++: +, *, -, &, ^, |, &&, ||, min, max

•  The following are only available for Fortran: IAND, IOR, IEOR
•  Variables that appear in a REDUCTION clause must be SHARED in the

enclosing context. A private copy of each variables in list is created for
each thread as if the PRIVATE clause had been used.

COPYIN clause

•  The COPYIN clause provides a means for assigning the same
value to THREADPRIVATE variables for all threads in the
team.
–  The THREADPRIVATE directive is used to make global file scope

variables (C/C++) or common blocks (Fortran) local and persistent to a
thread through the execution of multiple parallel regions.

•  List contains the names of variables to copy. In Fortran, the
list can contain both the names of common blocks and named
variables.

•  The master thread variable is used as the copy source. The
team threads are initialized with its value upon entry into the
parallel construct.

IF clause

•  If present, it must evaluate to .TRUE. (Fortran) or non-zero
(C/C++) in order for a team of threads to be created.
Otherwise, the region is executed serially by the master thread.

•  Only a single IF clause can appear on the directive.

How many threads?

•  The number of threads in a parallel region is determined by the
following factors, in order of precedence:
1.  If the NUM_THREADS clause appears after the directive name,

the number of threads specified is used for that parallel region.
2.  Use of the omp_set_num_threads() library function
3.  Setting of the OMP_NUM_THREADS environment variable
4.  Implementation default

•  The threads are numbered from 0 (master thread) to N-1
•  By default, a program with multiple parallel regions will use the same

number of threads to execute each region. This behavior can be
changed to allow the run-time system to dynamically adjust the
number of threads that are created for a given parallel section. The
num_threads clause is an example of this.

Fortran example of PARALLEL construct
PROGRAM REDUCTION
 INTEGER tnumber,I,J,K,OMP_GET_THREAD_NUM
 I=0; J=1; K=5
 PRINT *, "Before Par Region: I=",I," J=", J," K=",K

!$OMP PARALLEL PRIVATE(tnumber) REDUCTION(+:I)&
!$OMP REDUCTION(*:J) REDUCTION(MAX:K)
 tnumber=OMP_GET_THREAD_NUM()
 I = I + tnumber
 J = J*tnumber
 K = MAX(K,tnumber)
 PRINT *, "Thread ",tnumber," I=",I," J=", J," K=",K
!$OMP END PARALLEL

 PRINT *, ""
 print *, "Operator + * MAX"
 PRINT *, "After Par Region: I=",I," J=", J," K=",K
END PROGRAM REDUCTION

C example of PARALLEL construct

#include <omp.h>
main () {
 int nthreads, tid; /* Fork a team of threads giving
 them their own copies of variables */
#pragma omp parallel private(nthreads, tid)
 { /* Obtain and print thread id */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */
 if (tid == 0){
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 } /* All threads join master thread and terminate */
}

Work-Sharing Constructs

•  A work-sharing construct divides the execution of the enclosed
code region among the members of the team that encounter it.

•  Work-sharing constructs do not launch new threads
•  There is no implied barrier upon entry to a work-sharing

construct, however there is an implied barrier at the end of a
work sharing construct.

•  Types of Work-Sharing Constructs:
–  DO / for - shares iterations of a loop across the team. Represents a type

of "data parallelism".
–  SECTIONS - breaks work into separate, discrete sections. Each

section is executed by a thread. Can be used to implement a type of
"functional parallelism".

–  SINGLE - serializes a section of code
–  WORKSHARE - divides the execution of the enclosed structured

block into separate units of work

Work-Sharing Constructs Restrictions

•  A work-sharing construct must be enclosed dynamically
within a parallel region in order for the directive to execute in
parallel.

•  Work-sharing constructs must be encountered by all members
of a team or none at all.

•  Successive work-sharing constructs must be encountered in
the same order by all members of a team.

DO/for directive

•  Purpose:
–  The DO / for directive specifies that the iterations of the loop

immediately following it must be executed in parallel by the team. This
assumes a parallel region has already been initiated, otherwise it
executes in serial on a single processor.

•  Restrictions:
–  The DO loop can not be a DO WHILE loop, or a loop without loop

control. Also, the loop iteration variable must be an integer and the
loop control parameters must be the same for all threads.

–  Program correctness must not depend upon which thread executes a
particular iteration.

–  It is illegal to branch out of a loop associated with a DO/for directive.

Format of DO construct

!$OMP DO [clause ...
 SCHEDULE (type [,chunk])
 ORDERED
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 SHARED (list)
 REDUCTION (operator | intrinsic : list)
]
 do_loop

!$OMP END DO [NOWAIT]

(C/C++) Format of “for” construct

#pragma omp for [clause ...] newline
 { for-loop }

Where clauses are:
 schedule (type [,chunk])
 ordered
 private(list)
 firstprivate(list)
 lastprivate(list)
 shared(list)
 reduction(operator : variable-list)
 nowait

SCHEDULE clause

•  Describes how iterations of the loop are divided among the
threads in the team. For both C/C++ and Fortran.

•  STATIC:
–  Loop iterations are divided into pieces of size chunk and then statically

assigned to threads. If chunk is not specified, the iterations are evenly
(if possible) divided contiguously among the threads.

•  DYNAMIC:
–  Loop iterations are divided into pieces of size chunk, and dynamically

scheduled among the threads; when a thread finishes one chunk, it is
dynamically assigned another. The default chunk size is 1.

SCHEDULE clause

•  GUIDED:
–  The chunk size is exponentially reduced with each dispatched piece of

the iteration space. The chunk size specifies the minimum number of
iterations to dispatch each time.. The default chunk size is 1.

•  RUNTIME:
–  The scheduling decision is deferred until runtime by the environment

variable OMP_SCHEDULE. It is illegal to specify a chunk size for this
clause.

•  The default schedule is implementation dependent.
Implementation may also vary slightly in the way the various
schedules are implemented.

DO/for directive clauses

•  ORDERED:
–  Must be present when ORDERED directives are enclosed within the

DO/for directive.

•  LASTPRIVATE(list)
–  The LASTPRIVATE clause combines the behavior of the PRIVATE

clause with a copy from the last loop iteration or section to the original
variable object.

–  The value copied back into the original variable object is obtained from
the last (sequentially) iteration or section of the enclosing construct.
For example, the team member which executes the final iteration for a
DO section, or the team member which does the last SECTION of a
SECTIONS context performs the copy with its own values.

NOWAIT clause

•  If specified, then the threads do not synchronize at the end of
the parallel loop. Threads proceed directly to the next
statements after the loop.

•  In C/C++, must be in lowercase: nowait

•  For Fortran, the END DO directive is optional at the end of the
loop.

Fortran example DO directive
PROGRAM VEC_ADD_DO
 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=1000)
 PARAMETER (CHUNKSIZE=100)
 REAL A(N), B(N), C(N)
 ! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
 CHUNK = CHUNKSIZE
 !$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
 !$OMP DO SCHEDULE(DYNAMIC,CHUNK)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
 !$OMP END DO NOWAIT
 !$OMP END PARALLEL
END

C/C++ example of “for” directive
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main()
{
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;

 #pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
}

SECTIONS directive

•  The SECTIONS directive is a non-iterative work-sharing
construct. It specifies that the enclosed section(s) of code are
to be divided among the threads in the team.

•  Independent SECTION directives are nested within a
SECTIONS directive Each SECTION is executed once by a
thread in the team. Different sections will be executed by
different threads.

Fortran format of SECTIONS construct

!$OMP SECTIONS [clause ...
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 REDUCTION (operator | intrinsic : list)
]
[!$OMP SECTION]
 block

[!$OMP SECTION
 block]
 …
!$OMP END SECTIONS [NOWAIT]

(C/C++) Format of sections construct

#pragma omp sections [clause ...] newline
 {
 [#pragma omp section newline]
 structured-block
 [#pragma omp section newline
 structured-block]
 …
 }

Where clauses are:
 private(list)
 firstprivate(list)
 lastprivate(list)
 reduction(operator : variable-list)
 nowait

Fortran example SECTIONS directive
PROGRAM VEC_ADD_SECTIONS
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N)
! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
!$OMP PARALLEL SHARED(A,B,C), PRIVATE(I), NUM_THREADS(2)
!$OMP SECTIONS
!$OMP SECTION
 DO I = 1, N/2
 C(I) = A(I) + B(I)
 ENDDO
!$OMP SECTION
 DO I = 1+N/2, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL
END

C/C++ example of “sections” directive
#include <omp.h>
#define N 1000
main()
{
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i) num_threads(2)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i < N/2; i++)
 c[i] = a[i] + b[i];
 #pragma omp section
 for (i=N/2; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of sections */
 } /* end of parallel section */
}

SINGLE directive

•  The SINGLE directive specifies that the enclosed code is to be
executed by only one thread in the team.

•  May be useful when dealing with sections of code that are not
thread safe (such as I/O).

•  Threads in the team that do not execute the SINGLE directive,
wait at the end of the enclosed code block, unless a nowait (C/
C++) or NOWAIT (Fortran) clause is specified.

•  Format:
–  Fortran: !$OMP SINGLE [clause…] … !$OMP END SINGLE
–  C/C++: #pragma omp single [clause ...] newline
–  Clauses: private(list), firstprivate(list), nowait

Combined Parallel Work-Sharing Constructs:
PARALLEL DO

•  This is one of the simplest and most useful constructs for
fine-grain parallelism.

PROGRAM VEC_ADD_DO
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N)
 ! Some initializations
 !$OMP PARALLEL DO !By default, the static schedule
 DO I = 1, N !will be used and the loop will
 A(I) = I * 1.0 !be divided in equal chunks
 B(I) = A(I)
 ENDDO ! No need to put the END DO directive here

 !$OMP PARALLEL DO SHARED(A,B,C) PRIVATE(I)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
END

Combined Parallel Work-Sharing Constructs:
“parallel for”

#include <omp.h>
#define N 1000
main()
{
 int i;
 float a[N], b[N], c[N];

 /* Some parallel initialization */
 #pragma omp parallel for
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;

 #pragma omp parallel for private(i)
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
}

Synchronization Constructs

•  Let two threads on two different processors both trying to increment a
variable x at the same time (assume x is initially 0):

THREAD 1:
increment(x)
 { x = x + 1; }

THREAD 1:
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2:
increment(x)
 { x = x + 1; }

THREAD 2:
10 LOAD B, (x address)
20 ADD B, 1
30 STORE B, (x address)

One possible execution sequence:
1.  Thread 1 loads the value of x into

register A.
2.  Thread 2 loads the value of x into

register B.
3.  Thread 1 adds 1 to register A

4. Thread 2 adds 1 to register B
5. Thread 1 stores register A at

location x
6. Thread 2 stores register B at

location x
The resultant value of x will be 1, not

2 as it should be.

Synchronization Constructs

•  To avoid the situation shown on the previous slide, the
increment of x must be synchronized between the two threads
to insure that the correct result is produced.

•  OpenMP provides a variety of Synchronization Constructs that
control how the execution of each thread proceeds relative to
other team threads:
–  OMP MASTER
–  OMP CRITICAL
–  OMP BARRIER
–  OMP ATOMIC
–  OMP FLUSH
–  OMP ORDERED

Example…

real(8):: density(mzeta,mgrid)
density=0.

 do m=1,me
 kk=kzelectron(m)
 ij=jtelectron0(m)
 density(kk,ij) = density(kk,ij) + wzelectron(m)
 enddo

What happens when trying to parallelize this loop with OpenMP?

 Need to protect updates to density array!

One solution…

real(8) :: density(mzeta,mgrid),dnitmp(mzeta,mgrid)

!$omp parallel private(dnitmp)
 dnitmp=0. ! Set array elements to zero
!$omp do private(m,kk,ij)
 do m=1,me
 kk=kzelectron(m)
 ij=jtelectron0(m)
 dnitmp(kk,ij) = dnitmp(kk,ij) + wzelectron(m)
 enddo

!$omp critical
 do ij=1,mgrid
 do kk=1,mzeta
 density(kk,ij) = density(kk,ij) + dnitmp(kk,ij)
 enddo
 enddo
!$omp end critical
!$omp end parallel

THREADPRIVATE directive

•  The THREADPRIVATE directive is used to make global file
scope variables (C/C++) or Fortran common blocks and
modules local and persistent to a thread through the execution
of multiple parallel regions.

•  The directive must appear after the declaration of listed
variables/common blocks. Each thread then gets its own copy
of the variable/common block, so data written by one thread is
not visible to other threads.

•  Format:
–  Fortran: !$OMP THREADPRIVATE (/cb/, …)
–  C/C++: #pragma omp threadprivate (list)

THREADPRIVATE directive

•  On first entry to a parallel region, data in THREADPRIVATE
variables, common blocks, and modules should be assumed
undefined, unless a COPYIN clause is specified in the
PARALLEL directive.

•  THREADPRIVATE variables differ from PRIVATE variables
because they are able to persist between different parallel
sections of a code.

•  Data in THREADPRIVATE objects are guaranteed to persist
only if the dynamic threads mechanism is "turned off" and the
number of threads in different parallel regions remains
constant. The default setting of dynamic threads is undefined
(although usually “static” in practice).

Fortran example of THREADPRIVATE

 PROGRAM THREADPRIV
 INTEGER ALPHA(10), BETA(10), I
 COMMON /A/ ALPHA
!$OMP THREADPRIVATE(/A/)
C Explicitly turn off dynamic threads
 CALL OMP_SET_DYNAMIC(.FALSE.)
C First parallel region
!$OMP PARALLEL PRIVATE(BETA, I)
 DO I=1,10
 ALPHA(I) = I
 BETA(I) = I
 END DO
!$OMP END PARALLEL
C Second parallel region
!$OMP PARALLEL
 PRINT *, 'ALPHA(3)=',ALPHA(3), ' BETA(3)=',BETA(3)
!$OMP END PARALLEL
 END

C/C++ example of threadprivate construct
#include <omp.h>

int alpha[10], beta[10], i;
#pragma omp threadprivate(alpha)

main() {
/* Explicitly turn off dynamic threads */
 omp_set_dynamic(0);

/* First parallel region */
 #pragma omp parallel private(i,beta)
 for (i=0; i < 10; i++)
 alpha[i] = beta[i] = i;

/* First parallel region */
 #pragma omp parallel
 printf(“alpha[3]= %d and beta[3]= %d\n”,alpha[3],beta[3]);

}

OpenMP library routines

•  The OpenMP standard defines an API for library calls that perform a
variety of functions:
–  Query the number of threads/processors, set number of threads to use
–  General purpose locking routines (semaphores)
–  Set execution environment functions: nested parallelism, dynamic

adjustment of threads.
•  For C/C++, it is necessary to specify the include file "omp.h".
•  For the Lock routines/functions:

–  The lock variable must be accessed only through the locking routines
–  For Fortran, the lock variable should be of type integer and of a kind large

enough to hold an address.
–  For C/C++, the lock variable must have type omp_lock_t or type

omp_nest_lock_t, depending on the function being used.

OMP_SET_NUM_THREADS
•  Sets the number of threads that will be used in the next parallel region.
•  Format:

–  Fortran
•  SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

–  C/C++
•  void omp_set_num_threads(int num_threads)

•  Notes & Restrictions:
•  The dynamic threads mechanism modifies the effect of this routine.

–  Enabled: specifies the maximum number of threads that can be used for any
parallel region by the dynamic threads mechanism.

–  Disabled: specifies exact number of threads to use until next call to this routine.
•  This routine can only be called from the serial portions of the code
•  This call has precedence over the OMP_NUM_THREADS environment

variable

OMP_GET_NUM_THREADS

•  Purpose:
–  Returns the number of threads that are currently in the team executing

the parallel region from which it is called.

•  Format:
–  Fortran

•  INTEGER FUNCTION OMP_GET_NUM_THREADS()
–  C/C++

•  int omp_get_num_threads(void)

•  Notes & Restrictions:
–  If this call is made from a serial portion of the program, or a nested

parallel region that is serialized, it will return 1.
–  The default number of threads is implementation dependent.

OMP_GET_THREAD_NUM

•  Returns the thread number of the thread, within the team,
making this call. This number will be between 0 and
OMP_GET_NUM_THREADS-1. The master thread of the
team is thread 0

•  Format:
–  Fortran

•  INTEGER FUNCTION OMP_GET_THREAD_NUM()
–  C/C++

•  int omp_get_thread_num(void)

•  Notes & Restrictions:
–  If called from a nested parallel region, or a serial region, this function

will return 0.

Example of omp_get_thread_num

CORRECT:

PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

!$OMP PARALLEL PRIVATE(TID)
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID ...
!$OMP END PARALLEL

END

INCORRECT:
•  TID must be PRIVATE

PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

!$OMP PARALLEL
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ',
TID ...

!$OMP END PARALLEL

END

Other functions and subroutines

•  OMP_GET_MAX_THREADS()
–  Returns the maximum value that can be returned by a call to the

OMP_GET_NUM_THREADS function.

•  OMP_GET_NUM_PROCS()
–  Returns the number of processors that are available to the program.

•  OMP_IN_PARALLEL
–  May be called to determine if the section of code which is executing is

parallel or not.

More functions…

•  OMP_SET_DYNAMIC()
–  Enables or disables dynamic adjustment (by the run time system) of the

number of threads available for execution of parallel regions.

•  OMP_GET_DYNAMIC()
–  Used to determine if dynamic thread adjustment is enabled or not.

•  OMP_SET_NESTED()
–  Used to enable or disable nested parallelism.

•  OMP_GET_NESTED
–  Used to determine if nested parallelism is enabled or not.

OpenMP “locking” functions

•  OMP_INIT_LOCK()
–  This subroutine initializes a lock associated with the lock variable.

•  OMP_DESTROY_LOCK()
–  This subroutine disassociates the given lock variable from any locks.

•  OMP_SET_LOCK()
–  This subroutine forces the executing thread to wait until the specified

lock is available. A thread is granted ownership of a lock when it
becomes available.

•  OMP_UNSET_LOCK()
–  This subroutine releases the lock from the executing subroutine.

•  OMP_TEST_LOCK()
–  This subroutine attempts to set a lock, but does not block if the lock is

unavailable.

OpenMP timing functions

•  OMP_GET_WTIME()
–  This function returns a double precision value equal to the elapsed

wallclock time in seconds since some arbitrary time in the past.
–  The times returned are “per-thread times”.

•  OMP_GET_WTICK()
–  This function returns a double precision value equal to the number of

seconds between successive clock ticks.

•  Consults the OpenMP specification for more details on all the
subroutines and functions:
–  http://www.openmp.org/specs

OpenMP environment variables

•  OpenMP provides four environment variables for controlling
the execution of parallel code.

•  All environment variable names are uppercase. The values
assigned to them are not case sensitive.

•  OMP_SCHEDULE
–  Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/

C++) directives which have their schedule clause set to RUNTIME.
The value of this variable determines how iterations of the loop are
scheduled on processors. For example:

•  setenv OMP_SCHEDULE "guided, 4"
•  setenv OMP_SCHEDULE "dynamic"

OpenMP environment variables…

•  OMP_NUM_THREADS (the most used…)
–  Sets the maximum number of threads to use during execution. For

example: setenv OMP_NUM_THREADS 8

•  OMP_DYNAMIC
–  Enables or disables dynamic adjustment of the number of threads

available for execution of parallel regions. Valid values are TRUE or
FALSE. For example: setenv OMP_DYNAMIC TRUE

•  OMP_NESTED (rarely implemented on current systems)
–  Enables or disables nested parallelism. Valid values are TRUE or

FALSE. For example: setenv OMP_NESTED TRUE

Task: parallelize our π test code with
OpenMP

 program fpi!
 double precision PI25DT!
 parameter (PI25DT = 3.141592653589793238462643d0)!
 double precision mypi, pi, h, sum, x, f, a!
 integer n, myid, numprocs, i, j, ierr!

 open(12,file='ex4.in',status='old')!
 read(12,*) n!
 close(12)!
 write(*,*)' number of intervals=',n!
c!
 h = 1.0d0/n!
 sum = 0.0d0!
 do i = 1, n!
 x = h * (dble(i) - 0.5d0)!
 sum = sum + 4.d0/(1.d0 + x*x)!
 enddo!
 mypi = h * sum!
c!
 pi = mypi!
 write(*,*)' pi=',pi,' Error=',abs(pi - PI25DT)!

 end!

Summation ordering issues

•  What happens when we use a different integrand? such as:

Books on OpenMP

References

•  Excellent tutorial from SC’08 conference posted at:
–  http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf
–  See references within document

•  More tutorials:
–  http://static.msi.umn.edu/tutorial/scicomp/general/openMP/index.html
–  https://computing.llnl.gov/tutorials/openMP/

•  See http://openmp.org/wp/resources/

Mixing MPI and OpenMP
together in the same application

Why use both MPI and OpenMP in the
same code?

•  To save memory by not having to replicate data common to all
processes, not using ghost cells, sharing arrays, etc.

•  To optimize interconnect bandwidth usage by having only one
MPI process per NUMA node.

•  Although MPI generally scales very well it has its limit, and
OpenMP gives another avenue of parallelism.

•  Some compilers have now implemented OpenMP-like
directives to run sections of a code on general-purpose GPU
(GPGPU). Fine-grain parallelism with OpenMP directives is
easy to port to GPUs.

•  Processes are “heavy” while threads are “light” (fast creation
and context switching).

Implementing mixed-model

•  Easiest and safest way:
–  Coarse grain MPI with fine grain loop-level OpenMP
–  All MPI calls are done outside the parallel regions
–  This is always supported

•  Allowing the master thread to make MPI calls inside a parallel
region
–  Supported by most if not all MPI implementations

•  Allowing ALL threads to make MPI calls inside the parallel
regions
–  Requires MPI to be fully thread safe
–  Not the case for all implementations
–  Can be tricky…

Find out the level of support of your MPI library

int MPI_Init_thread(int * argc, char ** argv[],
 int thread_level_required,

 int * thead_level_provided);
int MPI_Query_thread(int *

thread_level_provided);
int MPI_Is_main_thread(int * flag);

MPI-2 “Init” functions for multi-threaded MPI processes:

•  “Required” values can be:
•  MPI_THREAD_SINGLE: Only one thread will execute
•  MPI_THREAD_FUNNELED: Only master thread will make

MPI-calls
•  MPI_THREAD_SERIALIZED: Multiple threads may make

MPI-calls, but only one at a time
•  MPI_THREAD_MULTIPLE: Multiple threads may call

MPI,without restrictions
•  “Provided” returned value can be less than “required” value

Compiling and linking mixed code

•  Just add the “openmp” compiler option to the compile AND
link lines (if separate from each other):
–  mpicc –openmp mpi_omp_code.c –o a.out
–  mpif90 –openmp mpi_omp_code.f90 –o a.out

Launching a mixed job

•  Set OMP_NUM_THREADS and then launch job with
“mpirun” or “mpiexec”

•  If you have an “UMA-type” node where all the cores have the
same level of access to memory, use a single MPI process per
node by using a hostfile (or machinefile) on a cluster

 export OMP_NUM_THREADS=4
 mpiexec –n 4 –hostfile mfile a.out >& out < in &

 %cat mfile
 machine1.princeton.edu
 machine2.princeton.edu
 machine3.princeton.edu
 machine4.princeton.edu

•  This job will use 16 cores: 4 MPI processes with 4 OpenMP
threads each

How to deal with the batch system

•  When submitting a job to a batch system, such as PBS, you do
not know in advance which nodes you will get.

•  However, that information is stored in $PBS_NODEFILE
•  If you launch a single MPI process per node you can do:

 /bin/cat $PBS_NODEFILE | uniq > mfile

 nprocs=`wc -l mfile | awk '{print $1}’`

 export OMP_NUM_THREADS=8

 mpiexec –n $nprocs –hostfile mfile ./mpi_omp_code

•  Make sure that the number of cores that you are asking for
equals nprocs*OMP_NUM_THREADS

•  On non-uniform memory access (NUMA) nodes, one needs to
be careful how the memory gets assigned to reach good
performance.

•  When in doubt, use 1 MPI process per “NUMA node”

Watch out for NUMA

CRAY XE6 node

NUMA
node

Launching a NUMA-aware job on the
CRAY XE6

•  Commands to launch a job that uses 1 MPI process per
NUMA node on the XE6:

 #PBS -l mppwidth=96
 #PBS -V
 #PBS -l walltime=1:00:00
 cd $PBS_O_WORKDIR
 export OMP_NUM_THREADS=6
 aprun -n 16 -d 6 -N 4 -S 1 -ss ./hybrid.x

•  You can still use a single MPI process per node but should use
a “first-touch” method to allocate memory close to the threads

•  The memory structure is complex
–  Multiple-levels (increasing)
–  Caches are invaluable but difficult to manage

•  Some difficulties with data access
–  Single processor effects

•  Cache misses and thrashing
•  TLB misses (TLB = Table Look-aside Buffer)

–  Multi-processor effects
•  False Sharing
•  Required synchronizations

•  NUMA Systems
–  Data allocation and distribution
–  Page misses and migration

How data move from memory to cpu

L3 cache

L2 cache

L1 cache

Registers

Main memory

FPU

CPU

